Biochemical Properties of Tissue-Engineered Cartilage

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior.

The insufficient load-bearing capacity of today's tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content and the collagen network architecture has gained interest. However, it is unknown whether the mecha...

متن کامل

Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage.

Tissue-engineering (TE) efforts for ear reconstruction often fail due to mechanical incompetency. It is therefore key for successful auricular cartilage (AUC) TE to ensure functional competency, that is, to mimic the mechanical properties of the native ear tissue. A review of past attempts to engineer AUC shows unsatisfactory functional outcomes with various cell-seeded biodegradable polymeric ...

متن کامل

Modeling the development of tissue engineered cartilage

A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with advective and diffusive solute transport, uptake and biosynthesis. To illustrate the approach we focused on the synthesis an...

متن کامل

A Review of Tissue‐Engineered Cartilage Utilizing Fibrin and Its Composite

Suitable alternatives are made for damaged or diseased organs and tissues in tissue engineering by combining cellular and molecular biology with materials and mechanical engineering. Fibrin is a critical blood component responsible for homeostasis, used extensively as a biopolymer scaffold in tissue engineering. This study summarizes the latest developments in organ and tissue regeneration usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Craniofacial Surgery

سال: 2014

ISSN: 1049-2275

DOI: 10.1097/scs.0b013e3182a2eb56